

A-Class Catamaran Board Hydrodynamics

Tom Speer http://www.tspeer.com/Aclass/A-ClassCatamaranFoils.pdf

Questions Considered

When an A-Class Catamaran is flying on foils,

- How does board design contribute to flying stability?
- What daggerboard geometries fit the A-Class Rule?
- How do board characteristics change with curvature?
- What is the tradeoff between heave stability & drag?
- Where might A-Class board design go in the future?

Focus is on understanding, not optimization

Lift-induced drag only – no profile drag, no wave drag

Terms

Requirements

Equilibrium Forces & Moments

∑Vertical Lift = Total Weight

 Σ Horizontal Lift = Side Force

Side Force * Center of Effort = Hydrodynamic Moment + Sailor Weight * Lever Arm

Leeway & angle of attack adjust to ensure equilibrium

Lifting line analysis
 considers wake shape
 in plane behind boards

Static Stability Requirements

- Assume sway, roll & yaw axes in equilibrium
- Start from trimmed condition
- Heave stability: dFz/dh < 0
 <p>An increase in flying height
 at constant pitch attitude => reduction in lift
- Pitch stability: dMy/dθ < 0 An increase in pitch attitude at constant flying height => bow-down moment
- Pitch-heave coupling: dMy/dh < 0
 <p>An increase in flying height
 at constant pitch attitude => bow-down moment

Design for Static Stability

Heave stability

- Surface piercing foils (V, ladder)
- Active feedback control (Moth, Rave, Trifoiler)
- Leeway-modulated lift (AC72)
- Pitch stability
 - Aft foil less heavily loaded than forward foil (per m²)
 - Weight forward

Pitch-heave coupling

- Forward foil has higher heave stiffness than aft foil
- Fully submerged aft foil (T rudders)
- Stern-first takeoff
- This talk only concerns heave stability of boards

A-Class Design Requirements

- Vertical lift = 160 kg
 - 75 kg boat
 - 85 kg crew
- Righting moment (about centerline) = 180 kg m
- Height of center of effort = 2.5 m (assumed)
- A-Class span limits
 - Beam < 2.3 m
 - Foils > 0.75m from centerline
- Exit from hull ~ 1.0 m from centerline
 - Demihull beam <0.3m
- Rigid boards are assumed
- Port-starboard symmetry

Design Parameters

- Geometry
 - Trunk location
 - Center depth
 - Bend radius
 - Wing dihedral
 - Board chord
 - Wing tip chord
- Operating Conditions
 - Flying height (h)
 - Heel angle (0, 10)
 - Speed (15 kt)

On to Foils!

Shapes Considered

C Board Load Distributions

C Board Characteristics

C Board Stability & Drag

- Leeway increases as boat flies higher
- Stability initially decreases as boat flies higher

Drag increases as boat flies higher

• Lift and drag shift to leeward board

Shapes Considered

Board Drag Comparisons

Board Stability Comparisons

Righting Moment Comparisons

Side Force Comparisons

C Board Loading

Effect of Toe-In/Out

Effect of Toe-In/Out

Effect of Toe-In/Out

Effect of Twist at Top

Effect of Twist at Bottom

Effect of Twist

Heave Stability vs Drag Tradeoff

What the Elephant Looks Like So Far

- C, J, L, < shapes investigated with lifting line
 - Allowable sail power is significantly reduced
 - Twin foils + symmetry = loss of righting moment
- Anhedral improves stability, adds drag (both boards in water)
- Heeling to leeward is destabilizing but adds sail power
- For C boards:
 - Toe-in is destabilizing
 - No effect on drag or sail power
 - Toe-out is stabilizing
 - Increases sail power, but large drag penalty
 - Wash-out reduces drag of rectangular planform
 - No effect of twist on sail power
 - Stability improved

Ideas For The Future

Problem of Symmetry

- Angle of attack affects both boards equally
- Equal vertical lift has no righting moment
- Need to rake boards differentially

L Foil With Anhedral

Effect of Differential Rake

Floating Flap

- Flap hinge moment is function of:
 - Flap shape (trailing edge camber)
 - Flap deflection
 - Angle of attack
- Flap free => hinge moment = 0
- Negative flap deflection reduces lift

NACA 63012a With 30% Chord Flap

Fine

